SQL SERVER 2000
HTM Interface Release 2.10

Alex Szalay, George Fekete, Jim Gray, July 12, 2003

This document describes the HTM interface through the SQLServer 2000 extended stored procedure functions. This is not intended to be a tutorial on the Hierarchical Triangular Mesh (HTM), and the reader is assumed basic familiarity with the concepts.
HTM CONCEPTS REVIEWED

The hid (short for HTM ID) is a 64 bit number that symbolically represents a particular trixel in the HTM hierarchy. At level 0 there are 8 spherical triangles, 4 for the Northern and Southern hemispheres each. Four of these triangles share a vertex at the pole. The sides opposite the pole form the equator. There are 8 unique integers that represent these triangles. Each spherical triangle can be split into four triangles by introducing new vertices at the midpoints of each side, and connecting the new vertices with the original ones. For each triangle we can repeat the process recursively and indefinitely to produce smaller and smaller spherical triangles. Each of these triangles has a level number that corresponds to the number of times an original (octant) triangle had to be split. Though the process can continue indefinitely, for practical reasons we will not consider anything beyond level 24. We must say here also, that the domain of integers that comprise valid hid numbers is not connected, that is, there are integers with apparently reasonable values that do not represent any hid. For example, the lowest hid is 8. We call triangles in the mesh scheme trixels.
EXTENDED STORED PROCEDURES

There are five extended stored procedures. Three of these perform some kind of computation, and two of them are used to find out what went wrong in cases where the computing functions return something that signals an error. The computing functions perform some complex operations, so it made sense to write them in an optimized compiled language.

NOTATION

Throughout this document where the definition of the language for interacting with the HTM interface is defined, we use the following notational conventions:

x,y,z,ra,dec,rad
ascii text representation of a floating point number
i
ascii text representation of an integer
nil
the empty string
’FOO’
the string FOO
[foo]
foo is optional
{foo | bar}
exactly one of foo or bar
{exp}3+
3 or more occurrences of exp
{exp}
the same as exp
{exp}0
the same as nil
POINTS

A hid represents an arbitrarily small spherical triangle in our HTM scheme. A point has no extension (area), but can be made into one-to-one correspondence with all the triangles is the mesh that contain the point. Therefore we can talk about the hid of a point at a particular level.

REGIONS

A region is an area of interest on the celestial sphere. You can specify a region as a polygon, convex hull of a polygon, rectangle or a circle. It is just that all of these alternate ways of defining a region get translated internally (and transparently to the user) into unions of convexes. The beauty of this is that you don’t actually need to know how this works, unless you want to.

EXTENDED STORED PROCEDURES

The extended stored procedures are reached through user functions that extend the language. See the Appendix for installation guide.

Lookup hid for a point

dbo.fHTM2_Lookup(coordSpec) returns the 64 bit number representing the hid of the point given by the specification

Compute hid ranges for a region

dbo.fHTM2_Cover(coverSpec)
A region can be approximated by a collection of triangles that cover the region. Each of these triangles has an hid, so a region is in fact a set of hids. But because the enumeration of hids tends to form locally connected intervals, the Interface returns a region as a list of hid left-half-open intervals -- a table filled with rows of two columns: start and end. IMPORTANT: Regardless of what level was specified for the precision of the cover, the hids are padded to 20 levels.

.

Find out what version of the DLL is installed

dbo.fHTM2_Version()
returns a string that looks similar to :
’HTM_V2.DLL (build 24R)’.

Find the cause of a bad function call

dbo.fHTM2_Cover_ErrorMessage(coverSpec)
dbo.fHTM2_Lookup_ErrorMessage(coordSpec)
returns a string that explains what is wrong with the given spec. If there are no problems, it returns ’OK‘
Find the cause of a bad function call

dbo.fHTM2_toNormalForm_ErrorMessage(coverSpec)
dbo.fHTM2_NormalForm_ErrorMessage(coverSpec)

returns a string that represents the REGION description of the coverSpec. This is a utility tool that converts CIRCLE, POLY, RECT, CHULL, into a REGION specification. The error condition may be syntax error, or a buffer overflow. The internal buffer is limited to 8000 bytes (ASCII characters).

SPECIFICATIONS

The following production rules explain what constitutes a valid coordinate and region (cover) specification.

coordSpec
=> j2000Pt | cartPt

j2000Pt
=>
‘J2000’ [‘L’i] ra dec

cartPt
=>
‘CARTESIAN’ [‘L’i] x y z

coverSpec
=>
polySpec | rectSpec | circleSpec | hullSpec |convexSpec

circleSpec
=>
‘CIRCLE J2000’ [‘L’i] ra dec rad

|
‘CIRCLE CARTESIAN’ [‘L’i] x y z rad
rectSpec =>
‘RECT J2000’ {ra dec}4

|
‘RECT CARTESIAN’ {x y z }4

polySpec => ‘POLY J2000’ {ra dec}

|
‘POLY CARTESIAN’ {x y z}3+

hullSpec => ‘CHULL J2000’ {ra dec}3+

Cartesian not implemented currently
convexSpec
=>
‘CONVEX’ { x y z D}+
regionSpec
=> ‘REGION’ {coverSpec}+
 Note that I think a region is a union of covers.

EXAMPLES
(there are many in a directory called ..\sql)

select dbo.fHtmLookup(‘J2000 L13 180 0’)
select dbo.fHtmLookup (‘J2000 230 –20’)
select dbo.fHtmLookup (‘CARTESIAN 1 0 0’)
select * from dbo.fHtmCover(‘J2000 185 0 5’)

EXAMPLES OF COVER SPECS

REGION
followed by a number of convexes. Only Cartesian coordinates are

allowed for the constraints.

REGION CONVEX 0.7 0.7 0.0 -0.5 0.7 –0.7 0.0 –0.5

REGION CONVEX 0.7 0.7 0.0 –0.5 CONVEX 0.7 –0.7 0.0 –0.5

CONVEX
followed by any number of (including zero) constraints. Only Cartesian coordinates are allowed for the constraints.

CONVEX 0.7 0.7 0.0 -0.5 0.7 –0.7 0.0 –0.5

CONVEX
CIRCLE
followed by a Point specification, like J2000 ra dec and a radius,

measured in arcminutes. Angles are measured in degrees. Represented as a CONVEX consisting of a single constraint .

CIRCLE J2000 182.25 –22.432 1.75

CIRCLE CARTESIAN 0.7 0.0 0.7 1.75
RECT
followed by two angular point specs, defining the min and max of the longitude and latitude. The latmin must be smaller than latmax. In a similar case for the longitudes, they are interpreted in the wrap-around sense, i.e. we can define an ramin=358.0 and ramax=2.0, this means a 4 degree wide range.

RECT J2000 182.25 –1.432 184.75 1.44

POLY
followed by an optional single Coordinate specifications and a number of corresponding point specifications (2 or 3 numbers each). The spherical polygon will be created, by connecting the points by great circles in a counterclockwise order. The points should form a convex spherical polygon, otherwise an error is returned.

RECT J2000 182.25 –1.432 184.75 1.44

CHULL
followed by an optional single Coordinate specification, and a number of corresponding point specifications (2 or 3 numbers each). The spherical convex hull will be created, by connecting the adjacent points by great circles. At least 3 points are needed. The points should be over a ‘small’ area of the sphere (in a single hemisphere), otherwise an error is returned. The order of the points is irrelevant.

CHULL J2000 180. –1. 190. –2. 185. 3. 182. 4. 185. 0.

MISCELLANEOUS

You can test the functions with the osql command from a command prompt window. Many such tests are in the sql directory of this distribution. These files have either a .sql or a .qry extension, and can also be run from Query Analyzer. From a trusted host near a SQLServer2000 server, like my test harness, you would type

osql –E –n –i foo.sql

