Outline

• CAS Team
• CAS Intro
• Data Storage
• Data Loading
• Data Access
• CAS for SDSS-IV
• SciServer DIBBS project
• SDSS-IV website
CAS Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>~ FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoyani Nandrekar-Heinis</td>
<td>Software developer (ImgCutout, SkyServer, JPEG generation, VO services)</td>
<td>0.5</td>
</tr>
<tr>
<td>Dmitry Medvedev</td>
<td>Software developer (CasJobs, SkyServer)</td>
<td>0.5</td>
</tr>
<tr>
<td>Sue Werner</td>
<td>Software developer (DB tuning, partitioning)</td>
<td>0.25</td>
</tr>
<tr>
<td>Victor Paul</td>
<td>Database administrator, storage management</td>
<td>0.5</td>
</tr>
<tr>
<td>Jordan Raddick</td>
<td>Documentation lead, press officer, website lead</td>
<td>0.5</td>
</tr>
<tr>
<td>Bonnie Souter</td>
<td>Website developer (SDSS.org, SkyServer)</td>
<td>0.5</td>
</tr>
<tr>
<td>Rich Ercolani</td>
<td>IT support lead</td>
<td>0.25</td>
</tr>
<tr>
<td>Alex Szalay</td>
<td>Oversight, DIBBs (SciServer) PI</td>
<td>0.05</td>
</tr>
<tr>
<td>Ani Thakar</td>
<td>Management, data loading, logging (SDSS/VO), SciServer integration</td>
<td>0.25</td>
</tr>
</tbody>
</table>
CAS Intro

• History
 – Original CAS an OODBMS
 – Migrated to SQL Server in 2001
 • The SkyServer was born in 2001
• Design based on analysis of logs
 – 3 main types of users:
 • Lots of quick queries
 • A few “power” users
 • Visual data browsers (astro)
 – Power users slowed everyone down
 • Need to segregate query workloads on separate servers
 – Increasing SQL usage
• Minimizing data movement
 – Bring the analysis to the data, not vice versa
CAS Design

- Based on relational DBMS: MS SQL Server
- Layer of science schema built right into the DB
 - Extensive use of UDFs/SPs
 - HTM spatial index in C# CLR
- 3 pillars of data access
 - Synchronous: SkyServer
 - Asynchronous: CasJobs
 - Visual: ImgCutout
- sqlLoader data loading pipeline
Reusable Building Blocks

- **SkyServer**
 - Extensive built-in science, query, metadata support
- **CasJobs batch query workbench**
 - Adapted and deployed in several (non) astro projects
- **ImgCutout visual JPEG browsing service**
 - Recently adapted to display 2MASS JPEGs
- **sqlLoader data loading pipeline**
- **Hierarchical Triangular Mesh spatial index**
 - CLR library written in C#, ported to Java, C++
- All downloadable from skyserver.org
- All MS SQL Server based, at present
SkyServer Web Interface

- The public portal to CAS data since 2001
- Supports several levels of user access
 - Simple to complex form queries
 - CrossID search with upload capability
 - Visual browsing of individual objects
 - Raw (filtered) SQL query
- Includes client for ImgCutout service
 - Finding Chart page
 - Google Maps-style Navigate page
 - Queryable Image List page for multiple cutouts at a time
- Schema Browser, extensive SQL help
- Virtual Observatory services (VO standards/protocols)
- Rich educational projects section (K-12+)
- Every web hit and SQL query recorded in logs
SkyServer Usage Logging

• All web hits and queries logged since day 1 (2001)
• **SkyServer traffic page** shows up-to-the-hour logs
 - 1.43 billion hits, 263 million SQL queries to date
 - Currently averaging 15M hits and 1.5M queries/mth
• Logging overview document at skyserver.org/doc
• 3 published papers on SkyServer traffic:
CasJobs

- Batch query workbench (launch 8/2003)
- Web application + web service backend
 - ASP.NET/C# development platform
- Workhorse of CAS data access
 - SDSS-II CasJobs: 9300 users, 6.1M jobs
 - SDSS-III CasJobs: 3800 users, 8.8M jobs
- Every user has their own SQL “MyDB”
 - Default size 0.5 GB, increased on request
- Quick (1min sync) & Long (8hr async) modes
- Complete searchable job history
- Schema browser, MyDB table browser
- Data Import, Groups feature to share data

SDSS-IV Data Review, October 15-16, 2014
Ani Thakar, JHU
ImgCutout

• ASP.NET/C# web service
• Client: SkyServer Visual Tools
 – Finding Chart
 – Navigate (Google Maps-style interface)
 – Image List upload with user query input
 – Explore and Quick Look object browsing
• JPEGs served from Frame table in DB
 – 3-color JPEGs generated from FITS
Data Storage

• Multiple instances of each DR
 – For redundancy, load-balancing and performance (workload segregation)
 – As many as 6 copies of most active DR!
 • For smooth ops and optimal performance
 • SkyServer, Quick CasJobs, Long Public CasJobs, Long Collab CasJobs, Imgcutout and development/backup/restore copy

• Currently ~ 120 TB of DR8-11 DBs
BestDR12 Schema

- Photo, Spectro largest group
- Meta tables for SB and xmatch
- APOGEE, WISE, MARVELS in own groups
Data Table Sizes

<table>
<thead>
<tr>
<th>Name</th>
<th>Rows</th>
<th>Data GB</th>
<th>Index GB</th>
<th>Total GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhotoObjAll</td>
<td>1,231,051,050</td>
<td>3130.7</td>
<td>1579.1</td>
<td>4709.8</td>
</tr>
<tr>
<td>PhotoProfile</td>
<td>44,563,999,574</td>
<td>1137.1</td>
<td>6</td>
<td>1143.1</td>
</tr>
<tr>
<td>AtlasOutline</td>
<td>1,219,412,987</td>
<td>1072.1</td>
<td>3.6</td>
<td>1075.8</td>
</tr>
<tr>
<td>Frame</td>
<td>3,752,184</td>
<td>989.8</td>
<td>0.5</td>
<td>990.3</td>
</tr>
<tr>
<td>Neighbors</td>
<td>25,578,382,962</td>
<td>942.7</td>
<td>6.4</td>
<td>949.1</td>
</tr>
<tr>
<td>WISE_allsky</td>
<td>563,921,584</td>
<td>537.8</td>
<td>149.9</td>
<td>687.7</td>
</tr>
<tr>
<td>SpecObjAll</td>
<td>3,358,200</td>
<td>185.9</td>
<td>1.1</td>
<td>187</td>
</tr>
<tr>
<td>PhotoObjDR7</td>
<td>364,857,538</td>
<td>111.3</td>
<td>7.1</td>
<td>118.4</td>
</tr>
<tr>
<td>PhotoPrimaryDR7</td>
<td>305,789,541</td>
<td>93.3</td>
<td>0.4</td>
<td>93.8</td>
</tr>
<tr>
<td>SegueTargetAll</td>
<td>453,975,934</td>
<td>51.7</td>
<td>8.4</td>
<td>60.1</td>
</tr>
<tr>
<td>Zone</td>
<td>794,035,877</td>
<td>49.7</td>
<td>0.4</td>
<td>50</td>
</tr>
<tr>
<td>thingIndex</td>
<td>563,688,948</td>
<td>35.8</td>
<td>10.3</td>
<td>46.1</td>
</tr>
<tr>
<td>detectionIndex</td>
<td>932,891,133</td>
<td>26.5</td>
<td>16.9</td>
<td>43.4</td>
</tr>
<tr>
<td>FIRST</td>
<td>510,679,510</td>
<td>40.2</td>
<td>0.1</td>
<td>40.3</td>
</tr>
<tr>
<td>USNO</td>
<td>253,732,084</td>
<td>38.7</td>
<td>0.2</td>
<td>38.9</td>
</tr>
<tr>
<td>Photoz</td>
<td>208,478,448</td>
<td>31.8</td>
<td>0.2</td>
<td>32</td>
</tr>
<tr>
<td>ProperMotions</td>
<td>336,954,036</td>
<td>29.2</td>
<td>0.1</td>
<td>29.4</td>
</tr>
<tr>
<td>TwoMASS</td>
<td>103,577,231</td>
<td>14.4</td>
<td>11.7</td>
<td>26.1</td>
</tr>
<tr>
<td>WISE_xmatch</td>
<td>495,003,196</td>
<td>16.9</td>
<td>8.9</td>
<td>25.8</td>
</tr>
<tr>
<td>PhotozRF</td>
<td>208,478,448</td>
<td>25.2</td>
<td>0.1</td>
<td>25.4</td>
</tr>
<tr>
<td>PhotozTemplateCoeff</td>
<td>517,961,077</td>
<td>12.2</td>
<td>0.1</td>
<td>12.3</td>
</tr>
<tr>
<td>PhotozRFTemplateCoeff</td>
<td>505,398,590</td>
<td>11.9</td>
<td>0.1</td>
<td>12</td>
</tr>
</tbody>
</table>

- Size > 10 GB
- PhotoObjAll largest table by far, most heavily indexed
- PhotoProfile has max rows but is thin and much less used
Data Loading

• Data products that go into CAS
 – Photo: SDSS, BOSS
 – Spectro: SDSS, BOSS, SEGUE,APOGEE
 – Window, Resolve, Region, Tiling etc.
 – Xmatches: USNOB, 2MASS, 2DF, ROSAT, FIRST, WISE All Sky
 – Galaxy Zoo 2 classifications

• Ingested in CSV format by sqlLoader
sqlLoader Data Ingest Pipeline

• System of SQL and VB scripts controlled by ASP client application (Load Monitor)
• Automates tedious data loading tasks
• Thoroughly checks data integrity
• Enables parallelism in data loading
• Provides complete history and log for each loading task
• Tracks statistics for loading performance
Loader Data Flow and Validation

- Load-Publish-Finish main stages
- Data first loaded into temp “task” dbs
 - Can be parallelized for fast loading
- Publish stage writes data to final db
- Finish stage creates indices, computed tables

Data correctness, consistency and integrity checks built into loading process
- Uniqueness checks, cardinality checks, relationship checks
- Have proven invaluable in the past in finding problems upstream of CAS
sqlLoader Screen Shots
CAS Data Release Cycle

- Detailed list of steps is in overview doc
- Cycle must be repeated for each data product (photo, spectro, APOGEE etc.)
- Most steps involve multiple actions
- Testloads are usually a small subset of DR data
- Entire cycle can take ~ 2 months
- Objective is to give collab a few months preview of data
- Steps in gray are only done once when all data products are in
CAS Admin Site: skyserver.org

- All CAS data/software downloadable
- Data releases downloadable as compressed SQL Server backups
 - Smaller subsets available for testing
- CAS mirror sites resource page
 - Mirrors can download latest updates here
- CAS/SkyServer documentation page
 - Skyserver.org/doc (data review docs here)
- SkyServer site download
- CasJobs download
- HTM spatial index doc and download
CAS Mirrors

• Official SDSS-III mirror: Brazil (LIneA)
 – Also hosts CasJobs mirror

• Other mirrors:
 – China (LAMOST)
 – Portsmouth

• SDSS-II mirrors worldwide
 – UK, Germany, Russia, China, Japan, India

• VO sites (NED, CDS)
CAS for SDSS-IV

• Continue current procedures, best practices
• Data volume increases manageable
 – Expect 2-4 TB per DR through 2020
• APOGEE-2, eBOSS data not radically different
 – Apply current tools, processes with tweaks
• MaNGA data will be biggest challenge
 – Both for complexity/novelty and size of data
 – Will need to develop new tools from scratch
• MaNGA data visualization in SkyServer
 – Tier 1 targeted for DR13 (mid-2016)
 – 0.5 FTE additional dev effort through 2018
SciServer

• JHU DIBBs project (sciserver.org)
• Generalize and extend SkyServer/VO framework
 – Reengineer/refactor SDSS data access tools for maximum reuse and extensibility
 – Port ASP SkyServer code to ASP.NET/C#
 – Convert CasJobs web services from SOAP to RESTful
 – Reengineer SkyQuery (VO service) on GrayWulfl platform
 – Integrate CasJobs and SkyQuery
 – Integrate SciDrive DropBox-like (VO) service with CasJobs/MyDB
 – Keystone SSO for access to all services
• Take ownership of legacy SDSS datasets
 – Integrate multiple SDSS phases: new sdss.org website
• Additional 1 FTE development on SDSS software (thru 2015)
• Additional dev hardware and storage
• Project management 1 FTE (M Rippin)
 – Formalized software development processes
Thank you!

• All documents and links to published articles about the SDSS CAS can be found at http://skyserver.org/doc/

• Happy to take questions after Jordan Raddick’s SDSS website overview
SDSS.org Integration and Rebranding

Jordan Raddick, JHU