Computing the Match table

Jim Gray, Alex Szalay, Robert Lupton, Jeff Munn
8 May 2003

The SDSS data can be used for temporal studies of objects that are re-observed at different times. The SDSS survey observes about 10% of the Northern survey area 2 or more times, and observes the Southern stripe more than a dozen times.

The match table is intended to make temporal queries easy by providing a precomputed list of all objects that were observed multiple times. More formally,

Match = { (ObjID1,ObjID2) | Objid1 and ObjID2 are both from different runs (==observations)

And they are within 1 arcsecond of one another

And are both good (star or galaxy or unknown)

And are both fully deblended (no children)

And they are primary or secondary (not family or outside)

The following count from the DR1 dataset says gives.

Mode

 total
 nChild=0

primary

52,525,576
52,525,576

secondary
14,596,931
14,596,931

family

17,074,000
 6,153,714

outside

 126,819
 126,819
And here are the flag counts for DR1
	Dr1 Count flag description.

	72,926,906
	SET
	Object's status has been set in reference to its own run

	72,926,906
	GOOD
	Object is good as determined by its object flags. Absence implies bad.

	10,186,591
	DUPLICATE
	Object has one or more duplicate detections in an adjacent field of the same Frames Pipeline Run.

	67,029,849
	OK_RUN
	Object is usable, it is located within the primary range of rows for this field.

	66,894,914
	RESOLVED
	Object has been resolved against other runs.

	66,839,376
	PSEGMENT
	Object Belongs to a PRIMARY segment. This does not imply that this is a primary object.

	 387,964
	FIRST_FIELD
	Object belongs to the first field in its segment. Used to distinguish objects in fields shared by two segments.

	62,728,244
	OK_SCANLINE
	Object lies within valid nu range for its scanline.

	53,60,3453
	OK_STRIPE
	Object lies within valid eta range for its stripe.

Computing the Match table

The Match table is computed by using the Neighbors table and has a very similar schema (the Neighbors table only stores mode (1,2) (aka primary/secondary) and type (3,5,6) (aka galaxy, unknown, star) objects;
Create table Match (objID

bigint not null,

matchObjID

bigint not null,

distance

float not null,

type

tinyint not null,

matchType

tinyint not null,

Mode

tinyint not null,

matchMode

tinyint not null,

primary key (objID, matchObjID)

) ON [Neighbors]
-- now populate the table

insert Match

select N.*

 from (Neighbors N join PhotoObj P1 on N.objID = P1.objID)

 join PhotoObj P2 on N.NeighborObjID = P2.objID

 where ((N.objID ^ N.neighborObjID) & 0x0000FFFF00000000) != 0 – dif runs

 and distance < 1.0/60.0
 -- within 1 arcsecond of one another
One arcsecond is a large error in Sloan Positioning – the vast majority (95%) are within a ½ arcsecond. But a particular cluster may not form a complete graph (all members connected to all others). To make the graph fully transitive, we repeatedly execute the query to add the “curved” arcs in the figure below.
-- compute triples
create table ##Trip(objid bigint, matchObjID bigint, distance float,

type tinyint, neighborType tinyint,

 mode tinyInt, matchMode tinyInt,

primary key (objID, matchObjID))

again: truncate table ##trip

-- compute triples

insert ##trip

select distinct a.objID, b.matchObjID, 0,

 a.type, b.matchType, a.mode, b.matchMode

from Match a join Match b on a.matchObjID = b.objID

where a.objID != b.matchObjID
and (a.objid & 0x0000FFFF00000000)!=
 (b.matchObjID& 0x0000FFFF00000000) -- Different runs
-- now delete the pairs we already have in Match

delete ##trip

where 0 != (

select count(*)

from Match p

where p.objID = ##trip.objID and p.matchObjID = ##trip.matchObjID

)

-- compute the distance between the remaining tripples

select 'adding ' + cast(count(*) as varchar(20)) + ' tripples.'

update ##trip

set distance =

(select min(N.distance)

from ##trip t join Neighbors N

 on t.objID = N.objID and t.matchObjID = N.NeighborObjID)

-- now add these into Match and repeat till no more rows.

insert Match select * from ##trip

if @@rowcount > 0 goto again

drop table ##trip
Computing the MatchHead table
Now each cluster of objects in the Match table is fully connected. We can name the clusters in the Match table by the minimum objID in the cluster. We can compute the MatchHead table that describes the global properties of the cluster: its name, its average RA and DEC and the variance in RA, DEC.

-- build a table of cluster IDs (minimum object ID of each cluster).

Create table MatchHead (

objID

bigint not null primary key,

averageRa
float not null default 0,

averageDec
float not null default 0,

varRa

float not null default 0,
-- variance in RA

varDec

float not null default 0,
-- variance in DEC

matchCount
tinyInt not null default 0,
-- number in cluster

missCount
tinyInt not null default 0
-- runs missing from cluster

) ON [Neighbors]

-- compute the minimum object IDs.

Create table ##MinID (objID bigint primary key)

Insert ##MinID

select distinct objID

from Match MinId

where 0 = (
select count(*)

from Match m

where MinId.objID = m.objID

and MinId.objID > m.matchObjID)

-- compute all pairs of objIDs in a cluster (including x,x for the headID)

create table ##pairs (objID

bigint not null,

matchObjID

bigint not null

primary key(objID, matchObjID))

insert ##pairs
select h.objID, m.matchObjID
from ##MinID h join Match m on h.objID = m.objID

insert ##pairs select objID, objID from ##MinID

-- now populate the MatchHead table with minObjID and statistics

Insert MatchHead

Select MinID.objID, avg(ra), avg(dec),

coalesce(stdev(ra),0), coalesce(stdev(dec),0),
count(distinct (m.objid & 0x0000FFFF00000000)), -- count runs

0
-- count misses later

from
##MinID as MinID,

##pairs
as m,

PhotoObj as o

where MinID.objID = m.objID

 and m.matchObjID = o.objID

group by MinID.objID

order by MinID.objID

-- cleanup

Drop table ##MinID

Drop table ##pairs

The number missing from the cluster is computed in the next section.

Computing the MatchMiss table
It is also of interest to have a list of objects that are in areas that were observed multiple times but that were only observed once. To do this we need:

(1) a description of each multiple-observation region.

(2) A count of how many times it was observed.

(3) An efficient way to test if a point is in a region

Alex will provide 1 and 2, jim will provide 3 (right?).

We will create a table of “dropouts”, places where a match cluster should have an object but does not.
Create table MatchMiss (
objID
bigint not null,
--- the unique ID of the cluster

Run
int not null,
-- the run that is missing a member of this cluster.
Primary key (objID, Run)

)

Logic:

(1) From Match find all pairs of runs that overlap

(2) Form the domain that is the union of the intersection of these pairs.

(3) Now build T, a list of all objects primary/secondary type (3,5, 6) objects that are in this domain.

(4) Subtract from T all objects that appear in Match

(5) Add these objects and the missing run number(s) to MatchMiss

(6) For each object in MatchHead, count the number of overlaps it is a member of. (MatchHead, runs)
(7) If this is equals the number of runs the match list then

Performance

Building Match and MatcHead takes about an hour on SdssDr1 with the Best database of 85M objects. The cardinalities of each step are:

	Match
	12,294,016

	add from triples
	19,040

	add from triples
	322

	add from triples
	16

	add from triples
	2

	add from triples
	0

	MinID
	5,545,446

	Mirror Pairs
	5,849,459

	Paris from match
	5,545,446

	MatchHead
	5,545,446

diameter

