Creating Sectors

Alex Szalay, Gyorgy Fekete, Tamas Budavari, Jim Gray, Adrian Pope, Ani Thakar, August 2003
The Problem

The spectroscopic survey will consist of about 2000 circular Tiles, about 1.5º radius, which contain the objects for a given spectroscopic observation. They will have overlaps, where the efficiency of the tiling is higher. At the same time, objects are not targeted/tiled uniformly over the plate; there are rectangular regions on the sky, tiBoundaries, which enclose the regions where objects were tiled. Some tiBoundaries are positive, others are negative (masks or holes.) These form rather complex intersections.

Definitions: Sectors, Regions and Nodes

Convex is the intersection of one or more circles, with a depth: the number of circles involved. If we have two intersection circles, A and B, then both (A) and (B) are a convex of depth 1, their intersection (A) (B) is also a convex, but of depth 2. We call these simple convexes wedges.
Region is the union of convex areas.
[image: image1.png]

Sector is a plate wedge modified by intersections with overlapping tiBoundary regions. If the tiBoundary regions are complex (multiple convexes) or if they are holes (isMask=1), then the resulting sector is also complex (a region of multiple convexes). Note by Jim: If we made each component a separate sector (so that each sector is always a convex) then things would be a lot simpler. OK?. TAs such a sector is just a single convex. Tiling boundaries do not add any depth to the sectors; they just truncate them to fit in the boundary.
[image: image2.png]

Algorithm

We really want the sectors, but it is easier to compute wedges first, then sectors, then sectors minus tiBoundary masks. In doing this we have some very useful tools at our disposal:
Regions can be described in many ways but here are the two we use:

CIRCLE J2000 ra dec radiusArcMin -- this is the Equatorial easy form of a circle.

REGION CONVEX [x y z c]+4

-- this is the normal form

fHtmToNormalForm(region) -> simplified region

If the region is empty, this is just the string “REGION CONVEX”

This routine discards useless edges, so it is a very useful routine.

fNormalizeString(region) (region

squeezes out blanks, trailing zeros, and converts -0.0 to 0.0

Ignoring optimizations (which are in the code in the appendix) the algorithm first builds the wedges table by keeping

a #Tile table of all the processed tiles in a tiles table.

A #TileWedge table that records which tiles are “parents” of each wedge

A #wedge table that has the definition of a wedge (its circles)
For each tile T in the Tiles table

Subtract all tiles in #Tile from T and add that sector to #wedge

Now for each wedge W in #wedge, add WT with depth+1

and add W-T with depth to the wedge table,

and delete W from the wedge table.

Now simplify all the new wedges and discard the empty one

using the fHtmToNormalForm function
Along the way, maintain the #TileWedge table.

Add T to #Tile

Great, we have the wedges and they are added to the Region, and Convex table. The depth is kept in the stripe column.

Now to compute the sectors, we do more or less the same thing.

For each wedge, call fGetOverlappingRegions(wedge,”TIGEOM’,0)

These are all the regions that overlap this wedge.

Intersect this wedge with each region that has isMask=0
to create a sset of new wedges
Call fHtmToNormalForm function on each of these and discard the null ones.

Intersect each of the surviving wedges with the NEGATIVE of each
 overlapping region that has isMask=1.
Call fHtmToNormalForm function on each of these and discard the null ones.

Great, we have the sectors and they are added to the Region, and Convex table.
Appendix: some SQL

-- ADD THIS TO THE SCHEMA

--/H For each Tile, there is a list of the wedges and sectors contained by that Tile.

--

--/T Each Tile is an 89.4 arcminute circle with a hole in it.

--/T The Tiles overlap to form disjoint "wedges" that are convex regions.

--/T Each wedge has a "depth" indicating how many Tiles cover it.

--/T The wedges in turn form "sectors" when they are intersected with the tiliing

--/T regions (Tiling regions are either positive or negative).

--/T This table stores a TileID, regionID, type for each "WEDGE" and "SECTOR"

--/T with that regionID covered by that TileID.

CREATE TABLE TileContains(

tileID BIGINT NOT NULL,
-- maps Tiles to wedges, reduces search

regionID INT NOT NULL,
--

type
 VARCHAR(16)

-- WEDGE or SECTOR

PRIMARY KEY(tileID, regionID))

GO

--===

-- Tile is a temp table of tileIDs, ra, dec, and the complement of the region string.

CREATE TABLE #Tile(
tileID BIGINT NOT NULL PRIMARY KEY, -- Tile ID

ra float, dec float, r float,
-- Tile coordinates.

tileRegion
 VARCHAR(1000), -- the region string

tileStringMinus VARCHAR(1000)) -- complement of the tile circle,
 -- used in negations.

--===

-- A work table used to build up the Tile-wedge and Tile-sector contain map.

-- This data eventually goes to the TileContainsRegion table.

CREATE TABLE #TileWedge(tileID BIGINT NOT NULL,
-- map tiles to wedges, reduce search

 wedgeID INT NOT NULL,

--

 type
 VARCHAR(16)

-- WEDGE or SECTOR

 PRIMARY KEY(tileID, wedgeID))

--===

-- A description of the wedge, eventually moves to region/convex tables.

CREATE TABLE #wedge(
wedgeID INT IDENTITY(1,1) PRIMARY KEY,

depth INT NOT NULL, -- how many tiles cover this wedge

plusOrMinus INT NOT NULL, -- a work variable for the computation

wedgeIdOld INT NOT NULL, -- a work variable (wedge parent)

convexString VARCHAR(7500) NOT NULL DEFAULT '')

CREATE INDEX WedgeOld ON #Wedge(wedgeIdOld)

--===

-- The intersection of the wedge with the various Tile geometry regions.

CREATE TABLE #Sector(wedgeID
INT NOT NULL,

 regionID
INT NOT NULL,

 regionString VARCHAR(7500),

 PRIMARY KEY (wedgeID, regionID))

---==

--- First clean out any old wedges and sectors in case this is a restart
DELETE Convex

WHERE regionID in (SELECT RegionID

 FROM Region

 WHERE type in ('WEDGE', 'SECTOR'))

DELETE RegionConvexString

WHERE regionID in (SELECT RegionID

 FROM Region

 WHERE type in ('WEDGE', 'SECTOR'))

DELETE Region WHERE type in ('WEDGE', 'SECTOR')

DELETE TileContains

---==

-- Start by computing the wedges.

---==

DECLARE @tileID BIGINT,

-- ID of the tile

@maxWedgeID INT,

@ra
 FLOAT,

@dec
 FLOAT,

@tileCircle VARCHAR(8000),

@tileRegion VARCHAR(8000),

@tileStringPlus VARCHAR(8000),

@tileStringMinus VARCHAR(8000),

@tileRemainder VARCHAR(8000),

@tileRadiusArcMins float

SELECT @tileRadiusArcMins = 60*value FROM SdssConstants WHERE name = 'tileRadius'

-- ==

-- for each new tile, divide up the wedges that tile intersects.

-- ==

DECLARE tiles CURSOR READ_ONLY FOR

SELECT tile, raCen, decCen

FROM Tile

ORDER BY tile ASC

OPEN tiles

-- ==

-- Main loop handles each tile once around the loop.

-- ==

FETCH NEXT FROM tiles INTO @tileID, @ra, @dec

WHILE (@@fetch_status = 0)

BEGIN

SELECT @maxWedgeID = coalesce(max(wedgeID),0) FROM #Wedge

--==

-- cast the tile as a circle and get its representation as a region

SET @tileCircle = 'CIRCLE J2000 ' +str(@ra,18,15) + ' ' + str(@ra,18,15)

 + ' ' + str(@tileRadiusArcMins,18,15)

SET @tileRegion = dbo.fNormalizeString(dbo.fHtmToNormalForm(@tileCircle))

--==

-- get the tile's vector representation, both postive and negative.

SELECT @tileStringPlus = str(cx,18,15) + ' '

 + str(cy,18,15) + ' '

 + str(cz,18,15) + ' '

 + str(d,18,15) + ' ',

 @tileStringMinus = str(-cx,18,15) + ' '

 + str(-cy,18,15) + ' '

 + str(-cz,18,15) + ' '

 + str(-d,18,15) + ' '

FROM dbo.fHtmStringToRegion(@tileRegion)

--==

-- get the part of the tile outside all others (subtract all others)

SET @tileRemainder = 'REGION CONVEX ' + @tileStringPlus

SELECT @tileRemainder = @tileRemainder + tileStringMinus

 FROM #tile T

 WHERE dbo.fDistanceArcMinEq(T.ra, T.dec, @ra, @dec) < 2*@tileRadiusArcMins

INSERT #wedge (depth, plusOrMinus, wedgeIdOld, convexString)

VALUES (1, +1 , 0 , @tileRemainder)

--==

-- These are the candidate wedges, they are parts of tiles that

-- overlap the new tile.

DECLARE @candidates TABLE(oldWedgeID INT NOT NULL PRIMARY KEY);

DELETE @candidates

-- empty the table

INSERT @candidates

SELECT DISTINCT TW.wedgeID

FROM #tile as T join #tileWedge as TW on T.tileID = TW.tileID

AND dbo.fDistanceArcMinEq(T.ra, T.dec, @ra, @dec) < 2*@tileRadiusArcMins

--==

-- For each candidate wedge, insert the positive and the negative 1/2 of the wedge

-- The positive 1/2 increases the depth.

INSERT #wedge (depth, plusOrMinus, wedgeIdOld, convexString)

SELECT depth+1, +1 , oldWedgeID, convexString + @tileStringPlus

FROM @candidates C join #wedge W on C.oldWedgeID = W.wedgeID

WHERE W.wedgeID <= @maxWedgeID

-- the negative half leaves the depth unchanged

INSERT #wedge (depth, plusOrMinus, wedgeIdOld, convexString)

SELECT depth, -1 , oldWedgeID, convexString + @tileStringMinus

FROM @candidates C join #wedge W on C.oldWedgeID = W.wedgeID

WHERE W.wedgeID <= @maxWedgeID

--==

-- Simplify the new wedges (it may simplify to null).

UPDATE #wedge

SET convexString = dbo.fNormalizeString(

dbo.fHtmToNormalForm(convexString))

WHERE wedgeID > @maxWedgeID

--==

-- Delete the null convexes from the scratch table.

DELETE #wedge WHERE wedgeID > @maxWedgeID

AND rtrim(convexString) = 'REGION CONVEX'

--==

-- Make old tile->Wedge pointers point to new instance

INSERT #tileWedge

SELECT TW.tileID, W.wedgeID, 'WEDGE'

FROM #tileWedge TW join #Wedge W on TW.wedgeID = W.wedgeIdOld

WHERE W.wedgeID > @maxWedgeID + 1 -- next statement picks up the "remainder case"

--==

-- Create the new tile-> Wedge pointers

INSERT #tileWedge

SELECT @tileID, wedgeID, 'WEDGE'

FROM #Wedge W

WHERE wedgeID > @maxWedgeID

 AND plusOrMinus = +1

--==

-- delete the old tile->Wedge pointers

DELETE #tileWedge

WHERE wedgeID in (SELECT wedgeIdOld

 FROM #Wedge

 WHERE wedgeID > @maxWedgeID)

--==

-- And delete the old wedges (that have now been split or at least recomputed.

DELETE #Wedge

WHERE wedgeID in (SELECT wedgeIdOld

 FROM #Wedge

 WHERE wedgeID > @maxWedgeID)

--==

-- done with this tile tile, add it to the list of processed tiles.

INSERT #tile VALUES(@tileID, @ra, @dec, @tileRadiusArcMins,@tileRegion, @tileStringMinus)

FETCH NEXT FROM tiles INTO @tileID, @ra, @dec

END

--=====================

CLOSE tiles

DEALLOCATE tiles

----------===

-- Put the Wedges in the region table

DECLARE @wedgeID INT,

@regionID INT,

@depth INT,

 @convexString VARCHAR(8000),

@newSector VARCHAR(8000),

@holeString VARCHAR(8000)

---==

--- A cursor on the wedges we just created

DECLARE wedges CURSOR READ_ONLY FOR

SELECT wedgeID, depth, convexString

FROM #wedge

ORDER BY wedgeID ASC

OPEN wedges

-- ==

-- for each wedge compute its positive intersections with tile geometry.

-- ==

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

WHILE (@@fetch_status = 0)

BEGIN

INSERT Region ([id] , type, [stripe], run, comment, ismask, area, sql, xml)

VALUES (@wedgeId, 'WEDGE', @depth, 0, '', 0, 0, '', '')

SELECT @regionID = @@IDENTITY -- the id of the last insert

/*regionID

FROM Region

WHERE [id] = @wedgeID and type = 'WEDGE'*/

INSERT Convex

SELECT @regionID, 1, 'WEDGE', cx, cy, cz, d

FROM dbo.fHtmStringToRegion(@convexString)

INSERT RegionConvexString

VALUES (@regionID, 1, 'WEDGE',

replace(@convexString,'REGION CONVEX ',''))

INSERT tileContains (tileID, regionID, type)

VALUES (@tileID, @regionID, 'WEDGE')

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

END

CLOSE wedges

-- ==

-- DONE WITH WEDGES.

-- Now compute SECTORS.

-- ==

-- ==

-- for each wedge compute its positive intersections with tile geometry.

-- ==

OPEN wedges

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

WHILE (@@fetch_status = 0)

BEGIN

INSERT #Sector

SELECT @wedgeID, Overlap.RegionID, Overlap.regionString

FROM fGetRegionsOverlapRegion(@convexString, 'TIGEOM', 0) Overlap

 join Region R ON Overlap.regionID= R.regionID

 and R.isMask = 0

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

END

CLOSE wedges

-- ==

-- for each sector compute its intersections with negative tile masks.

-- ==

-- Detect if hack works (will only work if each tile geometry element is convex).

IF exists (SELECT convexID

 FROM RegionConvexString

 WHERE type = 'TIGEOM'

 GROUP BY convexID

 HAVING count(*) > 1)

BEGIN

print 'Sorry, some holes are not convexs so Jim''s hack wont work'

GOTO Cleanup

END

-- Declare cursors over sectors and holes

DECLARE sectors CURSOR READ_ONLY FOR

SELECT wedgeID, regionID, regionString

FROM #Sector

ORDER BY wedgeID ASC

DECLARE holes CURSOR READ_ONLY FOR

SELECT convexString

FROM Region R join regionConvexString RCS on R.regionID = RCS.regionID

WHERE R.type = 'TIGEOM'

and R.isMask = 1

ORDER BY R.regionID ASC

OPEN sectors

--==

-- For each sector see if it overlaps a hole. If so, subtract the hole

FETCH NEXT FROM sectors INTO @wedgeID, @regionID, @convexString

WHILE (@@fetch_status = 0)

BEGIN

-- ConvexString is the AND of the 1/2 circles in the sector.

SET @convexString = replace(@convexString,'REGION ',' ') + ' '

OPEN holes

FETCH NEXT FROM holes INTO @holeString

WHILE (@@fetch_status = 0)

BEGIN

-- @holeString is the and of the 1/2 circles in the sector

SET @holeString = replace(@holeString,'REGION CONVEX','')

SET @holeString = ' ' + rtrim(dbo.fNormalizeString(@holeString))

-- If the AND of the two has non null overlap

IF len(dbo.fHtmToNormalForm('REGION ' + @convexString + @holeString))

> len('REGION CONVEX')+ len(@convexString)

BEGIN

--==

-- this hole hits this sector, subtract it out.

-- Sector is CONVEX ABC, hole is XYZ,

-- anwser is CONVEX ABC-X CONVEX ABC-Y CONVEX ABC-Z)

-- negate the hole string (flip the sign bit)

SET @holeString = replace(@holeString,' ',' -') -- + -> minius

SET @holeString = replace(@holeString,'--',' ') -- minus -> plus

--- this turns every ' 'x to 'convex sector x' (ie sector and x)

SET @newSector = replace(@holeString,' ', @convexString)

SET @newSector = dbo.fNormalizeString('REGION ' + @newSector)

-- Now simplify the region

SET @newSector = dbo.fHtmToNormalForm(@newSector)

-- The result is the new value of the sector.

UPDATE #Sector

SET regionString = @newSector

WHERE @wedgeID= @wedgeID and regionID =@regionID

END

FETCH NEXT FROM holes INTO @holeString

END

FETCH NEXT FROM sectors INTO @wedgeID, @regionID, @convexString

CLOSE holes

END

CLOSE sectors

--===

-- Delete any sectors that are null because the holes covered them.

DELETE #Sector WHERE 'REGION CONVEX' = rtrim(regionString)

---==

--- Now put the sectors in the regions table

-- Detect if hack works (will only work if each tile geometry element is convex).

-- Fail if convexString has two ... CONVEX CONVEX (== 2 convexes)

IF exists (SELECT wedgeID

 FROM #Wedge

 WHERE 0 != patindex(convexString, '%CONVEX%CONVEX%'))

BEGIN

print 'Sorry, some sectors are not convexs so Jim''s hack won''t work'

GOTO Cleanup

END

-- Declare cursors over sectors and holes

OPEN wedges

-- ==

-- for each sector add it to the regions and tiles tables

-- ==

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

WHILE (@@fetch_status = 0)

BEGIN

INSERT Region ([id] , type, [stripe], run, comment, ismask, area, sql, xml)

VALUES (@wedgeId, 'SECTOR', @depth, 0, '', 0, 0, '', '')

SELECT @regionID = regionID

FROM Region

WHERE [id] = @wedgeID and type = 'SECTOR'

INSERT Convex

SELECT @regionID, [id], 'SECTOR', cx, cy, cz, d

FROM dbo.fHtmStringToRegion(@convexString)

INSERT RegionConvexString -- **** test above proves sectors are single convexes

VALUES (@regionID, 1, 'SECTOR',

replace(@convexString,'REGION CONVEX ',''))

INSERT tileContains (tileID, regionID, type)

 VALUES (@tileID, @regionID, 'SECTOR')

FETCH NEXT FROM wedges INTO @wedgeID, @depth, @convexString

END

CLOSE wedges

-- ==

-- Common exit, deallocate cursors, drop temporary tables.

-- ==

Cleanup:

DEALLOCATE wedges

DEALLOCATE holes

DEALLOCATE sectors

DROP TABLE #tile

DROP TABLE #tileWedge

DROP TABLE #wedge

DROP TABLE #Sector

-- Lets see how it worked.

select * from tileContains

select * from region where type in ('WEDGE','SECTOR')

select * from convex where type in ('WEDGE','SECTOR')

select * from RegionConvexString where type in ('WEDGE','SECTOR')

� EMBED Photoshop.Image.6 \s ���

Figure 1. A has a blue boundary, B has the red boundary, both Regions of depth 1. Their intersection is yellow, a Region of depth 2. The crescent shaded in blue and green are the two Sectors of depth 1, and the yellow area is a Sector of depth 2. Nodes are purple dots.

�

Figure 2. This schematic figure shows how the tiles and tilling rectangles can intersect to form Sectors. On the figure we have a layout that has sectors of various depths, depth 1 is gray, depth 2 is light blue, depth 3 is yellow and depth 4 is magenta. The sectors are also clipped by the boundary.

PAGE
4

_1097932051.psd

