The SDSS DR1 Data Validator

Data emerges from the pipeline as ASCII files (csv == comma separated lists) and image files in JPEG and GIF format. Each batch of files is imported into a staging database where it is validated and enhanced. Once validated the data is moved to the production or archive databases.

 Pipeline → SQL validation in Staging DB →{Best, Target, Run} SQL databases

Photographic and spectrographic data have different routines, but Photo Best, Target, and Runs has approximately the same validation logic.

spValidator

The spValidator is invoked as a stored procedure on a particular database. Its job is to validate that database. It looks in the LoadSupport.dbo.Task table using the host name and DB name as a key. The returned record tells the validator.

(1) The type of validation (photo or spectro).

(2) If it is a photo job, the subtype (best, target, runs).

(3) The destination database.

(4) A job ID that is used to key all future log events.

The spValidator then branches to spValidateSpectro or spValidatePhoto. When these routines complete, spValidator writes a completion message in LoadSupport.dbo.Task and exits. At each step the validation routines record the result of a test using the xxx routine. The loader interface can watch the validation progress and can assess the success or failure of the validation by looking at this journal (in the load database) and by looking at the job summary record.
spValidatePhoto

The photo validator performs the following checks:

It checks the uniqueness of the following primary key fields:

 Chunk.chunkNumber
 CrossID.(objID, surveyID, surveyObjID)
 First.objID
 Field.FieldID
 FieldProfile.(fieldID, bin, band)
 Frame.FieldID

 PhotoObj.objID
 PhotoProfile(objID, bin, band)
 PhotoZ.objID
 Rosat.objID

 Segment.segmentID

 StripeDefs.stripe
 Survey.surveryID

 Synonym.(objID, matchID)
 USNO.objID

It then creates the following indices to make subsequent tests run quickly
 PhotoObj(objID),

Field(FieldID),

PhotoObj(HTMid, ObjID,cx,cy,cz,type, status)
It then tests the following foreign keys:

 Chunk.stripe

->
StripeDefs.stripe

 CrossID.objID

->
PhotoObj.objID
 CrossID.surveyID
->
Survey.SurveyID
 Field.segmentID

->
Segment.segmentID
 FieldProfile.fieldID
->
Field.fieldID
 First.objID

->
PhotoObj.objID
 Frame.fieldID

->
Field.fieldID
 PhotoObj.fieldID

->
Field.fieldID

 PhotoProfile.objID
->
PhotoObj.objID

 PhotoZ.objID

->
PhotoObj.objID

 Rosat.objID

->
PhotoObj.objID

 Segment.chunkNumber
->
Chunk.chunkNumber
 Synonym.ObjID

->
PhotoObj.objID
 Segment.stripe

->
StripeDefs.stripe

 USNO.objID

->
PhotoObj.objID

It then checks to see if the advertised populations match the real populations:

Segment.nFields
= count(fields) group by segmentID

Field.nObjects
= count(PhotoObj) group by fieldID

PhotoObj.Nprofiles = count(PhotoProfile) group by objID

It then looks at the PhotoObj parents (who was deblended from whom) and tests to see that PhotoObj(nChild) = count(PhotoObj) with that Parent for for the first 1000 non-null parents.

It also tests the first 1,000 to see that the external HTM calculation is similar to the internal one (a few errors are allowed due to rounding, but 99% of the results should agree exactly).

Frame.htmID

Mosaic.htmID

PhotoObj.htmID
Next it computes the neighbors of each object. For a Best database a 30 arc second neighborhood is computed. Target and Runs databases use a 3 arcsecond radius. The neighbors computation is complex enough that it has its own writeup (spNeighbors) as a separate memo. But the idea is the following.
 (1) the zone table is built from PhotoObj

 (2) it is augmented with “visitors” from the target area who might contribute neighbors.

 (3) the margins are added in

 (4) the 3 zone-joins are done to compute the neighbors.

 (5) the zone and foreigners tables are dropped.
This is the longest step of the validation process.

?? If best, should there be a photo-spectro matchup?
Lastly, it drops the indices it created for the validation work.
PhotoObj.I, PhotoObj.HTM, Field.I
It spValidatePhoto then returns to spValidate.
spValidateSpectro

Testing Spectrographic data loads is simpler. This data is always destined for the Spectro database and there are many fewer tests.

spValidateSpectro first tests the uniqueness of the primary keys.
Plate.plateID,

SpecObjAll.SpecObjID

ELRedshift.ELRedshiftID
XCRedshift.XCRedshiftID
SpecLine.SpecLineID
SpecLineIndex.SpecLineIndexID
It then creates two indices to make the subsequent tests run much faster:
SpecObjAll(SpecObjID), Plate(PlateID)
It then tests the following foreign keys:
SpecObjAll.plateID

->
Plate.plateID

ElRedshift.specObjID

->
SpecObjAll.specObjID

SpecLine.specObjID

->
SpecObjAll.specObjID

SpecLineIndex. specObjID

->
SpecObjAll.specObjID,
XCredshift.specObjID

->
SpecObjAll,specObjID,
It also tests the first 1,000 htms to see that the external HTM calculation is similar to the internal one.

SpecObjAll.htmID,
Need a photo-spectro matchup with Best
Lastly it drops the “working indices and returns.
SpecObjAll(SpecObjID), Plate(PlateID)

